Creative Math Marathi

Multiple Choice Question

- 1. If 13x + 12y = 25 and 12x + 13y = 75 then find x + y A) 1 B) 2 C) 3 D) 4
- 2. To draw graph of 4x + 5y = 19, Find y when x = 1.
 (A) 4 (B) 3 (C) 2 (D) -3
- 3. For simultaneous equations in variables x and y, Dx = 49, Dy = -63, D = 7 then what is x? (A) 7 (B) -7 (C) $\frac{1}{7}$ (D) $\frac{-1}{7}$
- 4. Find the value of $\begin{vmatrix} 5 & 3 \\ -7 & -4 \end{vmatrix}$ (A) -1 (B) -41 (C) 41 (D) 1
- 5. To solve x + y = 3; 3x 2y 4 = 0 by determinant method find D.
 (A) 5 (B) 1 (C) -5 (D) -1
- 6. Which Pair is not solution of x + y = 8
 A) (5,3) B) (6,2) C) (7,1) D) (5,4)
- 7. For equation 5x + ay = 12 if x = 1 and y = 1 then find the value of a.
 A) 4 B) 7 C) 5 D) 6
- 8. Which one is the quadratic equation? (A) $\frac{5}{x} - 3 = x^2$ (B) x (x + 5) = 2 (C) n - 1 = 2n (D) $\frac{1}{x^2}$ (x + 2) = x
- 9. Out of the following equations which one is not a quadratic equation? (A) $x^2 + 4x = 11 + x^2$ (B) $x^2 = 4x$ (C) $5x^2 = 90$ (D) $2x - x^2 = x^2 + 5$
- 10. The roots of $x^2 + kx + k = 0$ are real and equal, find k. (A) 0 (B) 4 (C) 0 or 4 (D) 2
- 11. For $\sqrt{2x^2} \cdot 5x + \sqrt{2} = 0$ find the value of the discriminant. (A) -5 (B) 17 (C) 2 (D) $2\sqrt{2} \cdot 5$

- 12. Which of the following quadratic equations has roots 3, 5?
 - (A) $x^2 \cdot 15x + 8 = 0$ (B) $x^2 \cdot 8x + 15 = 0$ (C) $x^2 + 3x + 5 = 0$ (D) $x^2 + 8x \cdot 15 = 0$
- 13. Out of the following equations, find the equation having the sum of its roots -5. (A) $3x^2 \cdot 15x + 3 = 0$ (B) $x^2 \cdot 5x + 3 = 0$ (C) $x^2 + 3x \cdot 5 = 0$ (D) $3x^2 + 15x + 3 = 0$
- 14. $\sqrt{5}$ m² $\sqrt{5}$ m + $\sqrt{5}$ = 0 which of the following statement is true for this given equation?(A) Real and unequal roots(B) Real and equal roots(C) Roots are not real(D) Three roots.
- 15. One of the roots of equation x2 + mx 5 = 0 is 2; find m. (A) -2 (B) $\frac{-1}{2}$ (C) $\frac{1}{2}$ (D) 2
- 16. Which are the roots of (x + 8) (x 2) = 0A) (-8, 2) B) (8, -2) C) (8, 2) D) (-8, -2)
- 17. Find the value of b^2 4ac to equation x^2 -7x + 5 = 0 (A) 49 (B) 29 (C) 92 (D) 69
- 18. The sequence -10, -6, -2, 2, . . .
 (A) is an A.P., Reason d = -16 (B) is an A.P., Reason d = 4
 (C) is an A.P., Reason d = -4 (D) is not an A.P.
- 19. First four terms of an A.P. are, whose first term is -2 and common difference is -2.
 (A) -2, 0, 2, 4
 (B) -2, 4, -8, 16
 (C) -2, -4, -6, -8
 (D) -2, -4, -8, -16
- 20. (3) What is the sum of the first 30 natural numbers? (A) 464 (B) 465 (C) 462 (D) 461
- 21. For a given A.P. t₇ = 4, d = -4 then a = . . . (A) 6 (B) 7 (C) 20 (D) 28
- 22. For an given A.P. a = 3.5, d = 0, n = 101, then $t_n = ...$ (A) 0 (B) 3.5 (C) 103.5 (D) 104.5

23. In an A.P. fir (A) -143		re -3, 4 then 21st term is (C) 137		(D) 17			
24. If for any A.I (A) 5	P. d = 5 then t ₁₈ (B) 20	$t_{13} = \dots$ (C) 25	(D) 30				
25. Sum of first f (A) 45	ive multiples of (B) 55	73 is (C) 15	(D) 75				
26. 15, 10, 5, (A) -75		m of first 10 ter (C) 75	rms is (D) 125				
27. In an A.P. 1s (A) 42	t term is 1 and (B) 38	the last term is (C) 21	20. The sum of (D) 19	Fall terms is = 399 then n =			
28. Given Arithr (A) 100	netic Progressio (B) 10		4, Find the 2 (C) 104	24th term of this progression. (D) 102			
29. First term and common difference of an A.P. are 6 and 3 respectively; find S10(A) 39(B) 195(C) 196(D) 390							
30. Which numb $(A)\frac{2}{3}$	oer cannot repre (B) 1.5	-	-				
31. A die is rolled. What is the probability that the number appearing on upper face is less than 3?							
(A) $\frac{1}{6}$	(B) $\frac{1}{3}$	(C) $\frac{1}{2}$	D) 0				
32. What is the probability of the event that a number chosen from 1 to 100 is a prime number?							
4	(B) $\frac{6}{25}$	$(C)\frac{1}{4}$	D) 1				
33. There are 40 cards in a bag. Each bears a number from 1 to 40. One card is drawn at random. What is the probability that the card bears a number which is a multiple of 5? (A) $\frac{1}{5}$ (B) $\frac{3}{5}$ (C) $\frac{4}{5}$ D) $\frac{1}{3}$							
34. If n(A) = 2, P (A) 10	$P(A) = \frac{1}{5}$, then r (B) $\frac{5}{2}$		D) $\frac{1}{3}$				

35. If two coins are tossed, find the probability of - Getting at least one head.

(A) $\frac{1}{4}$	(B) $\frac{2}{4}$	(C) $\frac{3}{4}$	D) $\frac{4}{4}$			
36. Three coir	ns are tossed sim	nultaneously, fi	ind the n(S)		
(A) 2	(B) 4	(C) 8	(D) 1	6		
37. If two dice	are rolled simu	ıltaneously, fin	d the n(S)			
(A) 6	(B) 12	(C) 18	(D) 3	6		
38. Find the sum of first n natural numbers.						
(A) n^2	(B) n (n +	1) (C	$n^2 + 1$	(D) $\frac{n(n+1)}{2}$		
39. Product of	Pragati's age 2	years ago and (3 years hen	ce is 84. Find her present age.		
(A) 6	(B) 7	(C) 8	(D) 9			
40. Two numb	oers differ by 3.	The sum of tw	vice the sma	aller number and thrice the grea		

40. Two numbers differ by 3. The sum of twice the smaller number and thrice the greater number is 19. Find the numbers.A) (5,3) B) (5,2) C) (6,4) D) (5,4)